Improving SVM by Modifying Kernel Functions for Speaker Identification Task

نویسندگان

  • Siwar Zribi Boujelbene
  • Dorra Ben Ayed Mezghanni
  • Noureddine Ellouze
چکیده

Support vector machine (SVM) was the first proposed kernel-based method. It uses a kernel function to transform data from input space into a high-dimensional feature space in which it searches for a separating hyperplane. SVM aims to maximise the generalisation ability that depends on the empirical risk and the complexity of the machine. SVM has been widely adopted in real-world applications including speech recognition. In this paper, an empirical comparison of kernel selection for SVM were used and discussed to achieve performance on text-independent speaker identification using the TIMIT corpus. We were focused on SVM trained using linear, polynomial and radial basis function (RBF) kernels. Results showed that the best performance had been achieved by using polynomial kernel and reported a speaker identification rate equal to 82.47%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of SVM Kernels and Conventional Machine Learning Algorithms for Speaker Identification

One of the central problems in the study of Support vector machine (SVM) is kernel selection, that’s based essentially on the problem of choosing a kernel function for a particular task and dataset. By contradiction to other machine learning algorithms, SVM focuses on maximizing the generalisation ability, which depends on the empirical risk and the complexity of the machine. In the following p...

متن کامل

Support Vector Machines for Speaker Verification and Identification

In this paper the performance of the support vector machine (SVM) on a speaker verification task is assessed. Since speaker verification requires binary decisions, support vector machines seem to be a promising candidate to perform the task. A new technique for normalising the polynomial kernel is developed and used to achieve performance comparable to other classifiers on the YOHO database. We...

متن کامل

A new SVM approach to speaker identification and verification using probabilistic distance kernels

One major SVM weakness has been the use of generic kernel functions to compute distances among data points. Polynomial, linear, and Gaussian are typical examples. They do not take full advantage of the inherent probability distributions of the data. Focusing on audio speaker identification and verification, we propose to explore the use of novel kernel functions that take full advantage of good...

متن کامل

A Kullback-Leibler Divergence Based Kernel for SVM Classification in Multimedia Applications

Over the last years significant efforts have been made to develop kernels that can be applied to sequence data such as DNA, text, speech, video and images. The Fisher Kernel and similar variants have been suggested as good ways to combine an underlying generative model in the feature space and discriminant classifiers such as SVM’s. In this paper we suggest an alternative procedure to the Fishe...

متن کامل

Signal theory for SVM kernel design with applications to parameter estimation and sequence kernels

Fourier-based regularisation is considered for the support vector machine (SVM) classification problem over absolutely integrable loss functions. We show that a principled and finite kernel hyper-parameter search space can be discerned a priori by using the sinc kernel. The method has been tested on two representative problems, deliberately chosen to be very different. First, simulations perfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JDCTA

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2010